
Rounding Techniques in Approximation Algorithms

Lecture 12: Iterative Relaxation for Discrepancy
Lecturer: Nathan Klein

1 Discrepancy

In this lecture, we will discuss a famous theorem of Beck and Fiala from the 80s [BF81] about
the discrepancy of bounded degree hypergraphs. We will interpret their proof as an iterative
algorithm that uses facts about the structure of extreme point solutions to an LP.

Given a hypergraph H = (V, E), the discrepancy of H, disc(H), is the minimum value of
maxe∈E |x(e)| over all colorings x : V → {−1, 1}, where x(e) = ∑v∈e xv. Equivalently, given a
matrix A ∈ {0, 1}m×n we want to find x ∈ {−1, 1}n that minimizes ‖Ax‖∞.

We will prove the following theorem:

Theorem 1.1. Let H be a hypergraph in which the degree of every vertex is bounded by t. Then,
disc(H) ≤ 2t.

In the homework, you are asked to improve this to either 2t− 1 for all t or to 2t− 3 when
t ≥ 3. The following example shows that the latter bound is tight for t = 3.

Figure 1: On the left is the Fano plane. The sets consist of all the lines, all joining three points.
t = 3 and the discrepancy is, perhaps surprisingly, 3. On the right is a modified instance with
discrepancy 1 and a coloring demonstrating this.

The proof of this theorem actually derives from a polyhedral view of discrepancy, which at
first glance seems pretty useless:

Pdisc =


x(e) = 0 ∀e ∈ E
−1 ≤ xv ≤ 1 ∀v ∈ V
xv = −1 ∀v ∈ R
xv = 1 ∀v ∈ B

Why useless? Well, because we can just set xv = 0 for all vertices, at least supposing R and B
are empty (you’ll see why they are useful later). So there’s no point in even solving it – or so it
seems at first glance! It turns out that the vertices of this polytope are not just all 0 (at least, under
certain conditions).

To prove this, we begin with a very innocent-sounding fact, where F is the set of "fractional"
variables between -1 and 1, i.e. F = V r (R ∪ B).
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Fact 1.2. Suppose every vertex is in at most t edges. Furthermore, suppose every edge contains at least
t + 1 vertices in F. Then, there are fewer edges than vertices in F.

Proof. There are at most |F|t vertex-edge incidences from vertices in F, but also at least |E|(t + 1).
The lemma follows.

Corollary 1.3. In any vertex of Pdisc in which every edge contains at least t + 1 vertices, there is a variable
in F set to −1 or 1.

Proof. After ignoring R and B, which are irrelevant, there are |F| variables, and fewer than |F|
non-trivial constraints by the above fact. By the rank lemma there must be a variable set to −1 or
1.

These two simple facts lead us to the proof of our main theorem.

Theorem 1.1. Let H be a hypergraph in which the degree of every vertex is bounded by t. Then,
disc(H) ≤ 2t.

Proof. Until all elements are in R or B, do the following. Delete all edges with at most t vertices in
F. Let x be a vertex of Pdisc with the current set of edges. By Corollary 1.3, there must be a vertex
v ∈ F with xv ∈ {−1, 1}. If xv = −1, add it to R and otherwise to B.

This algorithm must terminate, since a new color is set every iteration, and clearly the LP
remains feasible since we are only deleting constraints and fixing variables to values they had in a
feasible point. So it remains to prove the guarantee on the discrepancy.

Before an edge is deleted, it has x(e) = 0. At the moment of deletion, it has at most t fractional
coordinates. Therefore, x(e) can change by at most 2t, since each variable can change by at most 2.
This proves the theorem.

2 Iterative Relaxation

This falls into a general framework known as iterative relaxation.

Iterative Relaxation

Consider any linear program and an extreme point solution x. Fix all integer coordinates
of x, delete one of the constraints (in some problem-specific manner), and re-solve. Iterate
until all coordinates are integral.

Fact 2.1. In every iteration, the cost of x can only decrease. So, the cost of the resulting integer solution is
no more than integer OPT. Of course, it may not obey all the same constraints as integer OPT since we
deleted some.

In the next lecture, we will use this to prove the following theorem of Singh and Lau [SL15].

Theorem 2.2. Let G = (V, E) be a weighted graph and k ∈N. Let T∗ be the cheapest tree with maximum
degree k. Then, there exists a polynomial time algorithm which outputs a tree of cost at most c(T∗) and
maximum degree k + 1.
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This allows us to consider a different metric for approximation: instead of losing on cost, we
can output a solution that has slightly weaker properties than the OPT we compare against.

Notice that the above theorem is tight (unless P=NP). Setting k = 2, this is the Hamiltonian
path problem, so it cannot be solved without losing something on maximum degree (even without
costs).
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